
Architecture Guide
01 March 2021



Metadata

Review

Accountable Director

Policy Author

Date Approved

Date Last Reviewed

Date of Next Review

CTO

CTO

Sep 2017

Document history

Version Date Author Description

1 Sep 2017 CTO Intitial Version

2 Jul 2019 CTO Document Deprecated

3 May 2020 CTO Reintroduced document, added version metadata
and made major updates

4 Sep 2020 CTO Further context on scalability

5 Mar 2021 CTO Updates on deployment model

5 Mar 2021 CTO Updates on file encryption model

2



Contents

1 Infrastructure 4

1.1 Overview 4

1.1.1 Deployment Model 4

1.1.2 High Level Architecture 4

1.2 Cloud Security 6

1.3 Prisma Cloud 6

1.4 Audit Logging 6

2 Application 7

2.1 Overview 7

2.2 Access Management 7

2.2.1 Authentication 7

2.2.2 Authorisation 7

2.3 Data 8

2.3.1 Data Storage 8

2.3.2 Data Backups 8

2.3.3 Deletion 8

2.4 Monitoring & Logging 9

2.4.1 Audit Logging 9

2.4.2 Application Logging 9

2.4.3 Metric Monitoring & Alerting 9

2.4.4 Vulnerabilities 10

2.4.5 Denial of Service Attacks 10

2.5 Scalability 10

2.5.1 Context 10

2.5.2 Internal Tests 11

3 Operations 13

3.1 Access 13

3.2 Environments 13

3.3 SDLC 13

3.3.1 Design 13

3.3.2 Testing 13

3



3.3.3 Review & Approval 14

3.3.4 Deployment 14

3.4 Maintenance 14

3.5 Support 14

4



1 Infrastructure

1.1 Overview

1.1.1 Deployment Model

PassFort can be delivered in two ways:

• SaaS: All clients run on a shared infrastructure. Please see below for a list of locations.

• Managed on-premise: You have your own dedicated infrastructure, although PassFort runs

and manages the software. Please contact us for more details.

Location Provider Backup Location Premium Pricing?

Belgium Google Cloud

Platform

Other GCP EU

locations

No

UAE Microsoft Azure UAE Yes

Elsewhere Contact Us

1.1.2 High Level Architecture

A high level diagram of the system architecture follows, along with written descriptions.

5



PassFort runs as a micro-services application on top of Kubernetes. It is backed by three types of

data store:

• Databases: We use both MySQL and PostgreSQL databases. These are run in high availabil-

ity mode, with a hot standby server.

• File storage: We store files in Cloud Native Storage, and these are encrypted (at rest) within

the application level. Where available, these are versioned, and double encrypted using the

cloud provider’s native encryption.

• Search: We maintain a managed elastic search cluster to power the search features of the

application.

We have a data processing pipeline built in PySpark.

We use Hashicorp Vault for key management.

We utilise three products for monitoring PassFort:

• Prometheus/Grafana/Loki is used for logging, metric monitoring & APM. We use on-

premise versions of these services.

6



• Elastic is used for log management and search.

• Sentry is used for error reporting and investigation.

We have CircleCI for continuous integration and storage. Our codebase is managed in GitHub.

All access to PassFort is over HTTPs. We enforce TLS 1.2 and above, in line with industry standards.

We integrate with LetsEncrypt to generate certificates.

1.2 Cloud Security

Our SaaS services are deployed on top of mainstream cloud providers. They are responsible for

much of the low level security, including physical data-centre security and network security. We

also occasionally use of some of their managed offerings.

You can find more infomration about their security policies below.

Google Cloud Platform You can findmore information about GCP’s approach to security at https:

//cloud.google.com/security.

Microsoft Azure You can find more information about Azure’s approach to security at https://do

cs.microsoft.com/en-us/azure/security/fundamentals/.

1.3 Prisma Cloud

We have purchased a commercial cloud security solution called Prisma Cloud. This includes:

• Container vulnerability scanning, both pre-runtime and at run-time.

• Web application firewall (WAF)

• Infrastructure configuration compliance & audit — ensuring that our cloud setups do not de-

viate from best industry practices

1.4 Audit Logging

All events taken within our infrastructure are audit logged by our infrastructure providers. These

audit logs aremonitored by Prisma Cloud, and alerts are generated when configuration is changed,

or falls outside of specified parameters.

7

https://cloud.google.com/security
https://cloud.google.com/security
https://docs.microsoft.com/en-us/azure/security/fundamentals/
https://docs.microsoft.com/en-us/azure/security/fundamentals/
https://www.paloaltonetworks.com/prisma/cloud


2 Application

2.1 Overview

PassFort services are exclusively accessed over a single Restful JSON API, with JSON webhooks

used to communicate to client systems. Our services are written in a combination of Python and

Rust. Our services are configured as code via terraform and kubernetes.

We are migrating core services to Rust to leverage its strong type safety, and its ability to obviate

certain classes of error. Find out more at Why choose Rust?.

Our front end web application (the PassFort Portal) is a single page application written in Javascript

(on the React framework). This consumes the same API that is made available to clients. We use

flow to improve type safety.

2.2 Access Management

2.2.1 Authentication

Clients can authenticate with PassFort in a number of ways:

• Username and password: Passwords are salted and then hashed using SHA512. After initial

sign in we utilise sessions to maintain authenticated. This authentication method can be

augmented with a second factor (2FA) — we currently support SMS.

• Single Sign On (SSO): PassFort is integrated with Okta which allows us to leverage most

industry leading SSO providers. As above, we use sessions after the initial authentication. In

many cases we can synchronise teams into PassFort from the upstream SSO provider.

• API Key: System-system communication requires a 192bit API Key. All accounts have a mas-

ter API key (which can be regenerated), but secondary keys can be instantiated with scoped

permissions. This mechanism requires the token to be passed as a HTTP header with every

request.

2.2.2 Authorisation

PassFort supports a powerful permission system across its infrastructure.

These permissions can be configured in the UI, and typically allow for “read”, “write” or “no” access

across the different areas of the PassFort product. Permissions can also be scoped around specific

8

https://www.passfort.com/news/why-choose-rust


products.

Permissions are grouped into named roles, which can again be configured through our UI. These

can finally be attached to either a “team” (which grants the role to all team members), or to indi-

vidual users.

The permissions system is implemented internally via JWTs (JSON web tokens). Our gateway at-

taches a JWT describing the permission to the request. These JWTs are verified by a common

library which is used across our micro-services.

This authorisation system is the primary way through which client data is segregated. It has been

validated through a 3rd party security audit.

2.3 Data

2.3.1 Data Storage

PassFort stores personal data across two databases -MySQL and PostgreSQL.We utilise these two

technologies while we migrate fromMySQL to PostgreSQL. In our SaaS offerings, these databases

are managed by the cloud provieders through their native SQL products (e.g. GCP’s CloudSQL).

They run in high availability mode, with hot standbys. All data is encrypted at rest and in transit.

We also collect files from some customers. These are encrypted using our infrastructure provider’s

native encryption-at-rest tooling, with a minimum standard of AES-256. These are then backed

up in a mirrored storage bucket in another region. Access control to these buckets is managed by

our terraform configuration.

2.3.2 Data Backups

A detailed discussion of our backup strategy is included in our Disaster Recovery Policy.

2.3.3 Deletion

PassFort offers three forms of data deletion:

• Archival: this hides a profile from the UI, but maintains all data within the profile. This can

be actioned through the API or UI (with a specific set of permissions).

• Full profile deletion: this deletes a profile & its data fully. Wewill track the deletion within the

institution level audit log. This allows our clients to meet their obligations as data controllers

9



under GDPR. This can be actioned through the API or UI (with a specific set of permissions).

• Full institution deletion: this deletes an institution and all associated data (including the insti-

tution audit log). This would typically be actioned after off-boarding a client, within 30 days.

This cannot be instructed through the API, and should be actioned through your customer

success manager.

2.4 Monitoring & Logging

2.4.1 Audit Logging

All actions within the platform are logged within our application-level audit service. This audit

service logs actions taken by:

• Users

• Client applications (through API Keys)

• PassFort’s smart policy automation layer

We track audit items at two levels:

• Profile level: all events which affect a specific client profile are tracked within that profile’s

audit trail.

• Institution level: events not tied to a specific profile (e.g. smart policy configuration changes;

profile deletions) are tracked across an institution-specific audit log.

2.4.2 Application Logging

All services log data into a loki cluster, which lives alongside our application. As policy, logs do not

contain PII - we default to logging UUIDs. All logs contain basic audit information, and wemaintain

them in perpetuity (from Mar 2021; previously we had a 3mo retention window).

2.4.3 Metric Monitoring & Alerting

We use Prometheus and Grafana for listening to metrics and alerting on those metrics. Alerts are

filtered into several channels:

• Out of hours, high priority, alerts: alerts which indicate a significant event and must be

responded to out of hours by our on duty out-of-hours support team.

10

https://prometheus.io
https://grafana.com


• In hours, high priority, alerts: alerts which indicate a significant event but do not have sub-

stantial time pressure. These alerts are reviewed by our in hours support team on the next

working day.

• Pre-promotion alerts: alerts which are being evaluated for noise before promotion into one

of the above channels.

• Demoted alerts: alerts which are have been too noisy to be effective and are demoted pend-

ing improvement.

2.4.4 Vulnerabilities

We have a 0-critical and 0-high vulnerability policy, and review all others. We have a 14 day SLA-

to-resolution from the moment a resolution is published.

We monitor for vulnerabilities using:

• GitHub monitoring: this monitors code dependencies for vulnerabilities.

• Prisma: this monitors our containers (both in the registry and those running in our cluster).

2.4.5 Denial of Service Attacks

PassFort uses Google Cloud Engine’s Cloud Armor product to protect against (distributed) denial

of service attacks.

2.5 Scalability

2.5.1 Context

Creation vs updating profiles PassFort recomputes a smart policy from scratch every time a

profile is created or updated (whether the update is from a check provider or from a customer).

PassFort looks to optimise this recomputation (e.g. by caching results), but from a load-testing

perspective it is safe to assume that creates have similar performance.

We therefore load test profile creation, as in the vast majority of cases this will be the more expen-

sive of the two operations.

Bottlenecks PassFort’s architecture has several places which could theoretically cause a bottle-

neck. The highest risk areas are:

11



• Database performance: PassFort’s customers require strong guarantees around consistency

and durability of their data. This means that all operations which alter a profile must be

committed to a centralised database before returning.

• Workers: the vast majority of work in PassFort’s systems is done asynchronously via a mes-

sage queue and a set of worker processes. If there are not enough of these to service load,

then KPIs that our customer’s rely on (e.g. time to decision) could start to increase.

• Application locking behaviour: Our application handles all database locking at the profile

level — enforcing serialised access. This means that we can expect success handling a higher

number of profiles via horizontal scaling initiatives.

• Application services&workers: These are stateless, and therefore can be scaled horizontally.

Given there are hosted on kubernetes within the cloud, we are able to scale these within

minutes.

Load from other clients PassFort’s SAAS offering involves clients using shared infrastructure. To

mitigate the risk of a traffic spike from one client impacting others, we have client-specific queues

within our message broker. Workers operate on a round-robin approach to guarantee quality of

service to all clients.

2.5.2 Internal Tests

Setup PassFort was run in a small production environment:

• c. 50 workers

• DB with 2 cores & 7.5GB RAM

• We disabled all system autoscaling.

We configured an account with a complex script (based off of real customer configurations), in-

cluding all main modules:

• Risk

• Branching policy flow with 20 branches

• Waterfalled checks

• Providers — although these were run in demo mode - i.e. we did not make calls to third party

providers

We ran a script which created profiles in parallel at a configurable rate. We measured a number of

KPIs off the back off of this script, including API success rate, latency, profile time-to-decision. We

12



ran this script in stepped increments of 1000 profiles per hour (i.e. we ran at 1000p/h, 2000 p/h,

…).

Results We successfully tested the system to 30,000 profiles per hour (equivalent to 720,000

profiles per day). At all levels we saw good API performance.

Between 0 and 5,000 profiles per hour we saw profile time-to-decision stay flat, as we saturated

our workers.

Between 5,000 and 20,000 profiles per hour we saw time to decision increase predictably and lin-

early to a total of 3x baseline. Given the stable results, we believe this was due to worker saturation

(which occurred as we had disabled autoscaling of our systems).

Between 20,000 and 30,000 profiles per hour we saw time to decision fluctuate between 3x and

10x baseline. Reviewing our monitoring we saw that we started to hit the limits of our database.

Plans To push performance beyond the above numbers, we have a number of options:

Scaling the numbers of workers (this is already in place, but was disabled for the performance test).

Improving specifications of our database (we typically run production on a larger database to pro-

vide 10x headroom).

Improvements to howwe pipeline automations tominimise database contention (work is beginning

in Q4)

Horizontal sharding of the database (not currently forecast)

13



3 Operations

3.1 Access

Access to production systems is restricted.

Three users are designated administrators have complete access to production systems. This ac-

cess is only used in exceptional circumstances.

The vast majority of changes are made via configuration-as-code. These changes go through our

standard SDLC, where changes are reviewed and approved by peers and senior engineering man-

agement. This is then deployed into our staging and production environments by our CI/CD sys-

tems.

Our infrastructure is accessed via a VPN, which requires 2 factor access (hardware token).

3.2 Environments

PassFort maintains a production and a staging environment. These are functionally identical, with

similar access restrictions. The staging environment runs on a copy of production data (made at

least monthly).

3.3 SDLC

3.3.1 Design

The first phase of our SDLC involves doing design work on a feature. As part of this we do a risk

assessment of the feature. This informs our testing plan and deployment plan. When a feature is

high risk, it requires review and sign off from senior engineering stakeholders at the design phase.

3.3.2 Testing

PassFort has an extensive automated test suite. This includes:

• Unit testing: testing specific functions within a service.

• Feature testing: testing flows within a specific microservice, with other services mocked out.

• Integration testing: testing our microservices in aggregate. We exercise this via API calls,

headless browser UI tests, along with visual regression tests.

14



These tests are run via CircleCI as part of development and as part of our deployment process.

3.3.3 Review & Approval

All features are peer reviewed, with at least one review required before a feature is merged into

our codebase. We run a secondary risk assessment as part of this review process, identifying any

material changes between the design and the eventual implementation.

For features which are identified as high risk, reviews are required from senior engineering stake-

holders.

Where possible, we also run static analysis tooling to capture common errors.

3.3.4 Deployment

PassFort services are continuously deployed to — we deploy to them multiple times a day.

All PassFort services are have automated CI/CD.

We release features on Monday to Thursday. We only release hot-fixes out of these hours. If Pass-

Fort has to perform maintenance which will result in downtime, we target a maintenance window

of 8-9am on Sundays. This will be published ahead of time on https://status.passfort.com.

3.4 Maintenance

PassFort, or our the providers of our managed services, occasionally have to performmaintenance

that causes downtime. This typically includes upgrading the versions of our core infrastructure

(e.g. our databases). Although we try to avoid these events, they usually happen 1-2 times per year.

Recent downtimes have only been for a few minutes.

We have a consistent maintenance window which has been judged across our entire (global) client

base’s peak operating times. This is Sunday 8-9am UTC. We always provide advanced notice,

through https://status.passfort.com.

3.5 Support

PassFort support cafn be accessed via support@passfort.com. For those on our premium support

package, there is also a 24/7 phone number for P1 issues.

15



For more information about SLAs, please refer to your contract.

PassFort has on duty engineering 24/7. We split these into an “in hours” (IH) rotation and an “out

of hours” (OOH) rotation:

IH engineers act as a second line of support, for both client issues and internally generated issues

(e.g. alerts from our infrastructure monitoring).

OOH engineers are available to fix P1 issues identified by our clients and by our infrastructure

monitoring.

16


	Infrastructure
	Overview
	Deployment Model
	High Level Architecture

	Cloud Security
	Prisma Cloud
	Audit Logging

	Application
	Overview
	Access Management
	Authentication
	Authorisation

	Data
	Data Storage
	Data Backups
	Deletion

	Monitoring & Logging
	Audit Logging
	Application Logging
	Metric Monitoring & Alerting
	Vulnerabilities
	Denial of Service Attacks

	Scalability
	Context
	Internal Tests


	Operations
	Access
	Environments
	SDLC
	Design
	Testing
	Review & Approval
	Deployment

	Maintenance
	Support


